
.

A Tool For Automatic Verification of Real-Tin~e Expert Systems

11. ‘1’raylor, [J. Schwuttkc, A. Quan
Jet Propulsion Laboratory

California]nstitutc of Technology

4800 Oak Grove Drive

Pasadena, CA 91109

(81 8) 354-1455

bonnic@puente,jpl. nasa.gov

1.0 introduction

The creation of an automated, user-driven tool for ex-
pert system development, validation, and verification
is currently ongoing at NASA’s Jet Propulsion
Laboratory. In the new age of “faster, better, chcap-
~r!$ missions, there is an increased willingness to
utilize embedded expert systems for encapsulating
and preserving mission expertise in systems which
combine conventional algorithmic processing and ar-
tificial intelligence. The once-questioned role of
automation in spacecraft monitoring is now beconl-
ing one of increasing importance. III the wake of
dwindling budgets, mandated workforce reductions,
and increasingly complex systems, there is a growing
need for reliable, automated utilities to provide a
framework for the development, testing and mainte-
nance of such high-performance systems. Despite the
great strides made in this area within the last few
years, there are still too few tools which meet the de-
mands of the expanding experl system community,
and none which are applicable to the highly special-
ized one-of-a-kind systems in use at JPL. ‘I’his work
is an attempt to address some of these concerns,

2.0 Background

The expert systems currently in use at JPL are re-
sponsible for real-time monitoring and diagnosis over
broad domains [Schwuttke, et al. 1994]. These sys-
tems are responsible for efficient diagnosis of con~-
plex system failures in real-time environments with
high data volumes and moderate failure rates. In or-
der to ensure high performance, the algorithmic

‘1’hc Icscarch dcscribcd in this paper was carried out by the Jet Pro-
pulsion laboratory, California Institute of Technology under a
con{ract with the National Aeronautics and Space Administration.

portions of the systems are implemented in C, while
the knowledge-based diagnostic modules arc called
upon primarily for decision-making.

Requirements for the C modules are obtained via
conventional requirements processes and are docu-
mented either informally (for advanced development)
or in functional requirements documents (for n~ain-
stream development), However, the requirements for
our expert systems have been obtained in an ad-hoc
mode without any semblance of formality. As a re-
sult, knowledge transfer takes place through randonl-
ly scheduled interviews and ad-hoc phone conversa-
tions with end-users based on their limited and occa-
sional availability. The experts involved are space-
craft analysts, and they are a subset of the end-users
community. Typically the pallicipation of multiple
experts is required, even for know]edge bases of con-
strained scope. The experts make every effort to
provide sufficient insight into diagnosis requirements
and knowledge that an expert system developer can
implement a rule-base, a little at a time. Weeks or
even months might pass between successive
conversations, On occasion, an expert system has
been considered “finished,” only to have end-users
request additional development one or two years lat-
er, when the original developer of the expert system
was JIO longer available, introducing further ineffi-
ciencies into an already problematic development and
verification process.

The amount of time that is required to transfer knowl-
edge in this real-world situation probably is several
times greater than the amount of time that one or
more experts would need to specify the rule base:
most of the time required is not dedicated to the spec-
ification of rules, but to the transfer and assimilation

.
.

Ill~; t h e n,> t e s t l =true
t e s t 2 = f a l s e,$~i table,first = a

I’ig. 1

of domain knowedge needed to implement and ade- ment tool that utilizes ameta-language and templates
quately testtheruleiase. Comnlerc~a lshell shavenot
been sufficiently simple to use to make this possible,
and the expert systems generated by the use of these
shells have been sufficiently complex to both under-
stand and verify that multiple simultaneous develop-
ers from the end-user community have not been a
viable development option.

Therefore, the primary motivations behind the devel-
opment of this tool are to provide a visual represen-
tation of the state of a knowledge base in order to
maximize the value of expert time and resources. The
resulting tool is intended to provide a means for fa-
cilitating the development and future update of
knowledge bases. An additional goal has been the
creation of a standard platform over which expert
systems can be built and maintained, thereby elimi-
nating the need for understanding the collection of
shell languages that has become available for various
applications. Toward this end, this tool consists of
several major components: an update and develop-

for rule definition; a library of standard checkers as
commonly discussed in the literature, including a
performance monitor; and a visual guide to the rules
in the form of a flow graph displaying the relation-
ships among rules, all packaged in a sophisticated
graphical user interface.

3.0 Development/Update Component

3.1 Motivating Factors

Clearly, the most difficult phase of development of
monitor and analysis systems has been the formaliza-
tion of expert knowledge into expert system rules.
The process of translating rules of thumb and other
detailed expert information into highly constrained
and precise expert system rules is a tedious and pains-
taking one at best. Transfer of such knowledge from
the expert to the knowledge engineer is often a mon-
umental task, frought with misunderstanding and

.

L

Fig. 2

miscommunication. A possible solution to these current systems utilize only a fraction of the semantic
problems might be to allow the experts to encode
their own rules. However, many shells utilize such
complicated syntax and elaborate functionality that
experts are understandably hesitant to undertake the
task of learning the language in addition to their oth-
er responsibilities. In addition, once the knowledge
base development is begun, there remains the prob-
lem of validation. Although there are several excel-
lent tools available, none is currently compatible with
the shell languages currently in use at JPL.

3.2 Proposed Solution

Crossing the language barrier is a major challenge in
the development of an expert system validation tool
in an industry where shell languages are plentiful, and
standardization is virtually impossible. A major nlo-
tivation of this work is to allow the experts to encode
knowledge themselves, with only a little outside
assistance. This would greatly facilitate the expert
system development process, getting expertise on-
line quicker, and with fewer errors due to misconl-
munication between experts and knowledge
engineers. An analysis of rulebases currently in use
for monitoring downlink telemetry has yielded some
interesting results: the vast majority of the rules in

components of the language, and these components
seem to vary only slightly from shell to shell. Ac-
cordingly, a meta-language with very simple syntax
and few keywords which embodies the comn~onali-
ties of expert system shell semantics has been created,
This language incorporates a very useful intersection
of features from several languages, without the over-
head of bulky syntax and functionality. Specifically,
the nmta-language consists primarily of a declaration
section for explicit declaration of variables and data
structures (the single data structure provided is sinli-
lar to a C structure or Pascal record), a fact definition
section, and a rule definition section. Rules consist of
simple statements of the form

if <conditions> then <actions>

where conditions> are propositional relational tests
and cactions> are assignment statements (assertions),
print statements and function calls. The structure of
the variable declarations, facts, and rules is presented
to the user in the form of templates and pushbuttons.
Then, as in EVA [Stachowitz et, al., 1987], COVER
[Preece, et. al, 1992a], and others, the validation and
verification tests can be performed on the n~eta-
]anguage definitions. The verified rulebase can then
be translated into the shell language of choice with

minimal effort. The key difference here is that rules
are written directly into the meta-language, eliminat-
ing the need for a full-scale translation from the shell
language into an internal representation.

3.3 Tool Design

In an effort to provide the expert with a hospitable
and user-friendly environment, the tool is present-
ed in a sophisticated XWindows/Motif-based
graphical user interface (GUI). The top-level win-
dow (see Fig. 1) features a scrolled, read-only text
window in which the rules are displayed, and
which is updated as rules are edited. Pull-down
menus are available for file activites, graphical dis-
plays, and general and specific help. File activities
include loading, saving, and printing the rule base.
The “Graph” menu will provide options for either
viewing a graphical display of the relationships
among the rules, or performance monitoring. The
performance monitoring functions will provide the
user with various statistics related to the execution
of the rulebase, such as frequent firing sequences,
most frequently fired rules, etc., as well as provid-
ing a color-coded graphical display, highlighting
ru]ebase features with primary colors. Because
simplicity and ease of use are primary concerns, the
user will enter candidate rules into the rulebase via a
template, which will provide the user with the appro-
priate format of the rule. For example, an existing
rule may be changed by first selecting the appropriate
rule name with the mouse. This will cause the button
labeled “Add Rule” to be changed from its default
state and to display the label ‘ ‘Fdit Rule. ” The user
can then click on this button, which will pop up the
“Edit Rule” window (see Fig. 2). The three panes
here are labeled “Rule Name:, “ “if” and “then,”
and these panes will be filled with the information
appropriate to the rule which was selected from the
top-level text window. Clicking on the “Apply” but-
ton will cause this updated rule to be subjected to
various syntactic checks, as well as whatever verifi-
cation tests which are applicable for the incomplete
rule base, and also causes updates to be reflected in
the top-level window. When no text is selected (the
default state) the’ ‘Add Rule” label will be displayed,
and clicking on this button will cause a blank tem-
plate to be displayed. In addition, an optional palette
will accompany the rule-editing window, allowing
users to enter frequently-used language elements with

the push of a button. The “Add Vars” and “Add
Pacts” pushbuttons for editing variable and fact def-
initions are similar in function. The “Debug” func-
tion will provide an interface for watching variables,
inserting breaks, and stepping through the rules as
they fire. The “Verify” option is discussed in the
next section.

4.0 Verification Component

Various issues were considered in the determination
of knowledge base tests to include in this tool. The
primary motivating factor is that the intended user is
not necessarily a knowledge engineer, and therefore,
the need for extensive automatic syntax and semantic
checking is paramount. Before a candidate rule is
accepted for insertion into the rulebase, the rule will
undergo tests for possible syntactic and semantic
problems such as duplicate rule names, as well as for
conditions such as inconsistency, subsumption (re-
dundancy), and looping, among others, before being
added to the rulebase. ([Preece et al. 1992b] provides
concise, clear definitions of verification tests per-
formed by several existing systems, in addition to
providing a framework for comparison,) Syntactic
checking, such as that used by CHECK [Nguyen et
al. 1985] will provide a core, however, initial analysis
indicates that extended semantic checking like that
described in [Suwa, et al., 1982] and [Stachowitz, et
al,, 1987] will also be possible because the domains
of many applicable areas at JPL are mutually exclu-
sive, however, this remains an open issue. The tool
will also include capabilities for dynamic analysis of
the knowledge-base -- primarily for determination of
frequently-traversed paths, frequently and infre-
quently used rules, and olher performance meters. A
display of graphical elements corresponding to the
rules and the relationships among them will also be
included in the tool. This is clearly a very effective
medium for the presentation of certain types of errors
and also for performance monitoring. Although nei-
ther the graphical display of the rules, nor the graph-
ical user interface in which the tool will be packaged
is of any interest in ES V&V research, they are es-
sential components of a real-world application -- a
tool which is too abstruse or esoteric to be used with
minimal effort on the part of the expert/user is of 1 it-
tle value for producing usable systems.

5.0 Open Issues“

Because the exact specification of this tool is work-
in-progress, many design-related issues are yet to be
determined, First, it is imperative that as many struc-
tural and semantic verification tests are included as
possible. Some tests, however, are computaticmally
intensive for larger rule bases, and should therefore
bc included in the verification utility, rather than be-
ing applied automatically before a rule is inserted into
the rulebase. An analysis of the complexity of vari-
ous tests is yet to be completed, Similar complcxit y
issues related to the exact nature of the graphical dis-
play of rules are also still under investigation, and
therefore, the precise features of this utility are yet to
be determined. One very important feature of this
tool is that it should allow the execution of the rule-
basc to be monitored after it has been embedded
within the calling C code. This feature will be a dra-
matic improvement over past testing capabilities,
however the precise mechanics of this function have
not yet been identified. In addition, the possibility of
incorporating an extended semantic semantic checker
which utilizes meta-knowledge of the domains in
question, as mentioned before, is still under
consideration,

6.0 Conclusion

Due to the inavailabi]ity of expert system validation
and verification tools which interface with more than
one or two shell languages, other approaches to the
problem of producing reliable expert systems are
clearly necessary. Utilization of a meta-]anguage
front-end to multiple expert system shells, combined
with powerful verification algorithms and a sophisti-
cated graphical user interface provides a practical
solution to an old problem. This tool, however, is in
no way designed to be an all-purpose expert system
devc]opmcnt tool. It is not meant for the develop-
ment of large, standalone expert systems with ex-
tremely many rules, or which require complex lan-
guage functionality, However, it can be successfully
applied to small or medium-sized knowledge bases
which require only simple forward-chaining if-then
statements. This approach to the design and mainte-
nance of embedded expert systems has several
advantages. First, by producing only a front-end to
existing expert system shells, rather than producing a
full-scale validation and verification system for a sin-
gle general purpose shell, and by utilizing existing

verification techniques, the time required to develop
the tool will be very short. Additionally, it allows the
experts to be the developers of the expert systems,
which in turn eliminates errors caused by miscom-
munication with knowledge engineers. With the use
of expert systems for critical activities on the rise, the
development of sophisticated, yet easy-to-use tools
for validation and verification is critical.

7.0 References

Nguyen, T. A., Perkins, W. A., Laffey, T. J., and Peco-
ra, D. 1985. Checking an Expert Systems Knowledge
Base for Consistency and Completeness. In Proc. 9th
lnternat’1 Joint Ccwference on Artificial intelligence,
Vo] 1,375-378, AAAI.

Preece, A.D., Shinghal, R., and Batarekh, A. 1992,
Principles and Practice in Verifying Rule-Based
Systems. The Knowledge Ikgineering Review, Vol
7:2, 115-141.

Precce, A. D., Shinghal, R., and Batarekh, A. 1992.
Verifying Expert Systems: a Logical Framework
and a Practical Tool. Expert System with Applica-
tions 4(2/3).

Schwuttke, U. M., Veregge, J. R., and Quan, A.G.
1994. Cooperating Expert Systems for the Next Gen-
eration of Real-titne Monitoring Applications. In
Proc. 2nd lntertmt ’1 Conference on Expert Sy.vtetns
for Developtnent, Asian Institute of Technology,
Bangkok, Thailand,

Stachowitz, R, A., and Combs, J,B. 1987. Validation
of Expert Systems. In Proc. 20th Annual Hawaii in-
ternational Conference on System Scietlces, Vol 1,
686-695.

Suwa, M,, Scott, A. C., and Shortliffe, H,H. 1982. An
Approach To Verifying Completeness and Consis-
tency in a Rule-based Expert System. Al Magazine,
3(4) 16-21.

